
Large Language Model-Based Robot Task Planning
from Voice Command Transcriptions

Afonso Certo1, Bruno Martins2, Carlos Azevedo1,3, and Pedro U. Lima1

Abstract— One of the primary challenges in building a
General Purpose Service Robot (GPSR), i.e. a robot capable
of executing generic human commands, lies in acting upon
natural language instructions. These instructions often contain
speech recognition errors and incomplete information, com-
plicating the extraction of clear goals and the formulation of
an efficient and effective action plan. This work presents a
pipeline that leverages a Large Language Model to directly
translate instruction transcripts into coherent action plans. The
pipeline also integrates environmental context into the model’s
input, allowing for the generation of more efficient and context-
aware plans. The system’s performance was evaluated using a
simulator based on generalized stochastic Petri Nets, achieving
a success rate of around 55% on the ALFRED dataset, even in
unseen environments. The entire pipeline was also successfully
deployed at RoboCup 2024 in Eindhoven, where it secured sec-
ond place in the GPSR task. The code, dataset, and models are
available at https://github.com/socrob/llm_gpsr.

I. INTRODUCTION

In the field of domestic robotics, a major goal is de-
veloping a General Purpose Service Robot (GPSR), i.e. a
robot capable of executing generic human commands. One
such system has the potential to transform daily routines,
providing convenience and assistance, especially for individ-
uals with limited mobility or those requiring care. Achieving
this involves overcoming challenges in interpreting natural
language instructions and formulating action plans.

Traditionally, a GPSR pipeline starts by transcribing spo-
ken instructions using an Automatic Speech Recognition
(ASR) system, applies natural language processing to infer
goals, and uses a planner to determine actions. Each stage
presents challenges, especially in dynamic environments.

While state-of-the-art ASR models, such as OpenAI’s
Whisper [1], can accurately transcribe user instructions,
extracting goals from natural language remains challenging
due to vagueness and context-dependency. For example,
commands like “bring me a drink” require the robot to infer
missing details (e.g., which drink to choose and its location).

This research was supported by the Portuguese Recovery and
Resilience Plan through project C645008882-00000055 (i.e., the
Center For Responsible AI), and also by Fundação para a Ciência
e Tecnologia (FCT) through INESC-ID and LARSyS funding
(DOI:10.54499/UIDB/50021/2020, DOI:10.54499/LA/P/0083/2020,
DOI:10.54499/UIDP/50009/2020, and DOI:10.54499/UIDB/50009/2020).

1Institute for Systems and Robotics, Instituto Superior Técnico,
University of Lisbon, 1049-001 Lisbon, Portugal (e-mail:
afonso.certo@tecnico.ulisboa.pt; cguerraazevedo@tecnico.ulisboa.pt;
pedro.lima@tecnico.ulisboa.pt).

2INESC-ID, Instituto Superior Tecnico, University of Lisbon, 1000-029
Lisbon, Portugal (e-mail: bruno.g.martins@tecnico.ulisboa.pt)

3Laboratory for Automation and Systems, Instituto Pedro Nunes, 3030-
199 Coimbra, Portugal

Traditional planners, which rely on formal representations
of the environment such as PDDL, can integrate some
information gathered from the environment to fill in these
gaps. However, they are limited by the natural language
understanding module, which often struggles to general-
ize from specific ways of phrasing instructions. Moreover,
these formal representations cannot generalize common-
sense knowledge (e.g., that both a cup and a mug can be
used to serve a drink) if is not explicitly encoded.

Recent studies have demonstrated the potential of Large
Language Models (LLMs) in developing end-to-end planners
that convert user instructions directly into action plans [2]–
[4]. These approaches typically use few-shot learning, where
the language model is given a few examples of the task
and then generates a plan. However, this method relies on
very large models that are computationally intensive and
unsuitable for robots with limited resources.

This work introduces a lightweight pipeline that leverages
a LLM to generate action plans directly from instruction
transcripts. The model is fine-tuned using a dataset of in-
struction transcripts and corresponding action plans, allowing
the use of lightweight models, like Phi-3 [5], that can
be deployed on resource-constrained robots. The dataset is
created by combining the existing ALFRED dataset [6] with
instructions generated by the command generator used in the
GPSR task of the annual RoboCup@Home competition [7],
and respective plans generated using an existing rule-based
pipeline previously used by the SocRob@Home team. The
model is then fine-tuned using this dataset, to generate action
plans directly from instruction transcripts.

The proposed approach also aims to enhance the robot’s
decision-making by integrating knowledge about the environ-
ment when generating the plans. By querying a continuously
updated semantic map of the environment, the robot can plan
more efficiently. For example, if the robot has previously
seen a drink in the bedroom, it can prioritize searching the
bedroom before moving on to other areas.

By combining LLMs with context-aware planning, this
work aims to create a more robust and efficient approach
to executing commands in real-world environments.

II. RELATED WORK

A. Petri Net-based Approaches

An example of a traditional approach for the GPSR
task is the pipeline from the SocRob@Home team. In this
approach, goals are extracted from user commands using a
rule-based NLU module, and a planner based on a Petri
Net planning toolbox [8] is used to generate the actions

https://github.com/socrob/llm_gpsr

needed to achieve these goals [9]. Although this approach
provides a generalized solution for planning, that can adapt
to information gathered about the environment, it is heavily
limited by the rule-based NLU module, which can only
handle a predefined set of commands. This limitation makes
it difficult to scale the system to handle a wider range of
commands and environments.

B. Planning with Large Language Models

Recent developments in the field of LLMs have opened up
the possibility of creating end-to-end planners that directly
convert user instructions into executable actions for robots.

One approach to leveraging LLMs in planning is to use
them for evaluating the likelihood of actions fitting into a
plan, rather than directly generating text. The SayCan frame-
work [2] exemplifies this by combining language models
with affordance-based scoring to improve the feasibility of
generated plans. This method involves using the LLM to
score potential actions based on their relevance to the user’s
instruction. The affordance score evaluates the likelihood of
successfully executing each action in the given context. By
integrating these two scores, SayCan enhances the planning
process, achieving higher success rates in task completion.

Another approach to leveraging LLMs is to have the model
generate a complete plan directly. This reduces the number
of LLM calls compared to scoring actions iteratively. For
instance, Wake et al. [3] employs ChatGPT to produce a
sequence of actions based on a JSON description of the
environment and a user instruction. The prompt includes
available actions, their effects, and in-context examples of
inputs and outputs to guide the model in generating valid
plans. By updating the predicted environment state after each
step, this method supports long multi-step instructions, while
minimizing context retention.

A similar method by Song et al. [4] uses GPT-3 but
differs in key areas. Instead of always including the en-
vironment description, this approach re-prompts the model
with the currently visible objects only when an action fails.
Additionally, it selects examples dynamically. The most
relevant ones are chosen based on the similarity between the
current instruction and a dataset of prior instructions. This
selection, determined using Euclidean distance in an encoded
space, ensures the prompt adapts to the task at hand. Both
approaches illustrate the potential of LLMs to efficiently plan
multi-step tasks in dynamic environments.

Vision-Language Models (VLMs) have also been used
in robot control. This is demonstrated by the Robotics
Transformer 2 (RT-2) system [10]. Instead of working with
primitive actions, RT-2 integrates VLMs directly into low-
level control, enabling the generation of movement instruc-
tions for the robot’s joints directly from sensorial data.

Our work aims to iterate on these advancements, by fine-
tuning a LLM to generate plans composed of primitive
actions, allowing for the use of smaller models that can be
deployed on resource-constrained robots. Additionally, the
model is integrated with a semantic map of the environment,

Speech
Recognition

Prompt
Generation

Semantic
Map

LLM Executor

Instruction
Transcript

Environment
Information

Prompt Action Plan

API Calls
Perception
Information

LLM Planner

Fig. 1. Proposed pipeline.

to enhance planning efficiency by incorporating the robot’s
knowledge of the environment.

III. METHODOLOGY

As illustrated in Figure 1, the proposed planner inte-
grates several components to process user instructions. The
workflow starts with the ASR module, which transcribes
user instructions into text. This transcript, along with an
environment representation, is fed into a prompt for the
LLM. The LLM generates a list of actions to achieve the
instruction’s goals. This list is output as a JSON plan, parsed,
and sent to the executor module for execution.

A. Instruction Representation

To improve resilience to external factors such as noise, the
ASR module employs a diverse beam search algorithm [11]
to generate multiple transcription hypotheses. This approach
enables the system to capture a range of possible transcrip-
tions, thereby enhancing robustness and accuracy.

The diverse hypotheses are integrated into the LLM
prompt. Specifically, all four generated hypotheses are in-
cluded in the prompt, allowing the model to consider
different interpretations of the input. In Figure 2, this is
represented in blue. By incorporating multiple hypotheses,
the system can better handle ambiguous or noisy instructions,
potentially leading to more accurate and effective responses.

B. Environment Representation

During its exploration of the environment, the robot
gathers information and stores it in a semantic map. This
semantic map organizes information into three levels, namely
rooms, locations, and objects.

A room is the primary structure representing major divi-
sions of the domestic environment, such as the kitchen, the
bedroom, or the living room. Each room has a name and a
list of associated locations.

Locations are specific places within a room, such as a
kitchen table in the kitchen, a sofa in the living room, or
a bedside table in the bedroom. There are two types of
locations: supporting surfaces, which can contain objects
(e.g., a table), and generic locations, to which the robot can
move but cannot contain objects (e.g., a door).

Finally, the objects are entities the robot can manipulate,
such as a wine bottle, a sponge, or a ball. Objects can have
additional properties beyond their name and surface, such as
a category, dimensions, and default locations.

<|user|>
You are Bob, a robot designed to execute general
tasks based on instructions from humans. Your
task is to choose the most appropriate spoken
instruction hypothesis from a list provided and
convert it into a list of actions that you can
execute, in a JSON format.

The following json represents the information you
know about the environment:
{"rooms": [

{"name": "kitchen",
"contains surfaces": [{
"name": "kitchen table",
"distance": 1.977,
"contains objects": ["wine bottle"]

}]
]

The instruction hypotheses are:
0. bring me a ring from the kitchen
1. bring me the ring from the kitchen
2. bring me a drink from the kitchen
3. bring me the drink from the kitchen

<|assistant|>

Fig. 2. Prompt example describing an environment with a room and surface,
including four instruction hypotheses, three with ASR errors.

The data in the semantic map is converted into a JSON
representation for inclusion in the prompt, represented in
red in Figure 2. Currently, the JSON representation includes
only the name and location of each object, but it can be
expanded to include additional properties useful for planning.
The representation also includes the straight-line distance to
the locations within each room, allowing the model to choose
the nearest option when faced with many possibilities.

C. Action Representations

The planner’s actions are executed by the executor, which
processes action messages and interfaces with the robot’s
API to run commands. An action is defined as a skill the
robot can perform, carried out by a low-level controller, such
as moving to a waypoint, picking up or placing an object,
or following a person. An action can also involve active
perception skills, such as finding an object or a person in the
environment, or communication skills, such as describing an
object or asking and answering questions.

For more complex behaviors, some actions produce out-
puts. For example, the “find object” action identifies a spec-
ified object and returns its unique identifier. These outputs
can be stored in the executor’s knowledge base and used in
subsequent actions. For instance, the identifier from the “find
object” action can be used as input for the “pick” action,
enabling the robot to grasp the desired object.

Actions are represented as ROS messages, which include
the name of the action, source and destination locations,
object identifier, additional object information (e.g., object
color, size, or shape), person identifier, additional person
information (e.g., person’s age, clothing color, or posture),
voice command text, and the name of the output variable to
store the action’s result in the executor’s knowledge base.

D. Language Model Adaptation

To generate the actions required to achieve the user’s
goals, the LLM must be adapted to the task. This adaptation
involves two different methods: fine-tuning a Low-Rank
Adaptation (LoRA) over the LLM and using a Grammar-
Constrained Decoding (GCD) algorithm during inference.

LoRA [12] is a method for adapting a pre-trained LLM to
a specific task, by fine-tuning a low-rank adaptation of the
pre-trained model. This method allows the model to learn
new tasks while retaining the knowledge acquired during pre-
training, also requiring less resources in the process.

In our specific case, a dataset consisting of diverse ob-
ject manipulation and human-robot interaction instructions,
paired with corresponding plans, was generated using the
rule-based approach from the SocRob team. These data was
used to introduce the model to the planning task.

In addition to fine-tuning, to ensure that the generated plan
can be successfully parsed, a GCD algorithm [13] is used
during inference to enforce that the output adheres to the
expected format. This algorithm uses a context-free grammar
during the decoding process, restricting the model to only
generate valid sequences of tokens. The grammar enforces
the structure of the JSON file, validates action names and
their corresponding values, and ensures that all fields are
correctly populated. For example, it verifies that each action
name is recognized and that destinations correspond to valid
locations.

IV. IMPLEMENTATION DETAILS

A. Used Datasets

Two primary datasets were employed as sources for
ground truth plans: a dataset of instructions generated by the
RoboCup command generator, and the ALFRED dataset.

RoboCup’s GPSR Command Generator

The rule-based planning approach can generate
ground-truth plans from instructions provided by the
RoboCup@Home command generators. Two different
versions of the generator are available.

An older generator1 includes GPSR with 61 templates for
9 task types, and EGPSR with 86 templates for 16 task
types. These tasks involve object manipulation and people
interaction, such as finding, picking, placing objects, and
interacting with people. The EGPSR tasks are more complex,
with longer multi-step commands and more action types.

The newer generator2 offers 37 templates for 15 task types,
mainly reformulated from the older versions, maintaining
task diversity aligned with competition objectives.

Both versions use randomized names for objects, people,
and locations, within environments typically consisting of 4
rooms, 30 object types, and 15 to 20 person names.

To compile the dataset, 1000 commands were generated
from each of the three available generators (GPSR, EGPSR,
and the newer generator). Some commands from the older

1https://github.com/kyordhel/GPSRCmdGen
2https://github.com/johaq/CommandGenerator

https://github.com/kyordhel/GPSRCmdGen
https://github.com/johaq/CommandGenerator

TABLE I
NUMBER OF EXAMPLES FROM EACH SOURCE COMPILED, THE

EXAMPLES IN BOLD WERE USED TO TRAIN THE MODEL.

Data Set Number of Examples
Older

Generator
GPSR 962

EGPSR 821
Newer

Generator
ISR Testbed 200

RoboCup 2024 200

ALFRED
Train 5077

Validation Seen 197
Validation Unseen 148

version were filtered due to execution constraints, reducing
the number of usable commands.

Commands from GPSR and EGPSR generators were cre-
ated using the Institute for Systems and Robotics (ISR)
testbed environment3 for the training split. The newer gener-
ator produced commands for validation, divided into “ISR
Testbed” (same environment as training) and “RoboCup
2024” (new environment for generalization evaluation). The
distribution of examples is shown in Table I.

The ALFRED Dataset

The ALFRED dataset [6] was used to enhance the
RoboCup@Home data, as it includes expert demonstrations
created with comprehensive knowledge of the environment
and its objects. It contains 25,743 language directives, cor-
responding to 8,055 expert demonstrations, covering seven
task types based on object manipulation, and involving 58
unique object classes, 26 receptacle classes, and 120 indoor
environments. Each environment is a single room from one of
four types: kitchens, bathrooms, bedrooms, and living rooms.

The primary plans in ALFRED are defined at a lower
level than our executor’s actions, but the dataset also includes
higher-level plans generated by a PDDL planner, which align
more closely with the executor’s actions and were used as
ground-truth plans. Plans requiring fine motor skills, such
as slicing objects, were excluded from the dataset used for
fine-tuning the model.

The dataset is divided into training, validation, and test
sets. However, the test set lacks the high-level plans needed
for conversion, rendering it unusable. The validation set is
further divided into ”seen” and ”unseen” environments to as-
sess the model’s generalization capabilities. The distribution
of examples across these subsets is presented in Table I.

B. Dataset Expansion

To ensure the planner’s resilience to ASR errors, and to
evaluate its performance under such conditions, the datasets
used for both training and evaluation were expanded to
incorporate examples of these errors.

Experimentation revealed two primary types of errors in
the ASR module: simple errors, where only one or two words
in a sentence are incorrect, and catastrophic errors, which
occur when the transcription is severely impacted, such as
when the microphone cuts off mid-sentence. An example of

3https://isr.tecnico.ulisboa.pt/isrobonet/

a simple error is transcribing the instruction “Find John at the
side table” as “Find John at the website table.” In contrast,
a catastrophic error might result in an incomplete or garbled
transcription, making the command unusable.

Ideally, these two error types require different handling
strategies. The model should, for instance, be robust to
simple errors, correctly interpreting the command despite
minor inaccuracies in transcription. However, in cases of
catastrophic errors, where the transcript provides little to
no useful information, it is crucial that the model avoids
generating nonsensical plans. Instead, it should recognize the
failure and prompt the user to repeat the instruction.

To simulate these scenarios, ASR errors were injected into
the original instructions using a simulator [14]. This tool
replaces words in a sentence with phonetically and semanti-
cally similar words, based on a probability determined by
the Word Error Rate (WER). A WER of 10% was used
to generate simple errors, introducing only a few incorrect
words into the transcription, while a WER of 100% was
employed to simulate catastrophic ASR failures.

C. Model Adaptation

The Phi-3-mini-4k-instruct model [5] was selected for its
lightweight design and ability to be quantized to 4 bits,
enabling it to run efficiently on a robot’s laptop with an
NVIDIA GeForce RTX 4070 and 8 GB of VRAM.

Model fine-tuning was carried out using the unsloth
framework,4 with the model quantized to 4 bits and LoRA
parameters r = α = 16. An 8-bit version of the AdamW
optimizer was used with a learning rate of 2× 10−4, along
with gradient checkpointing to reduce memory usage.

In addition to the examples from the training splits of the
datasets, 689 simulated catastrophic ASR errors were used
to train the model, totaling 7 458 examples. Training was
performed with a batch size of 2 and 4 gradient accumulation
steps. The fine-tuning ran on an NVIDIA A100 for up to 50
epochs, with early stopping based on the action success rate
(a metric explained in the next section) every 50 steps.

V. EVALUATION METHODOLOGY

A. Evaluation Using Ground Truth Plans

To address the need for a simple evaluation metric during
training, we adopted a straightforward approach: directly
comparing the generated plan with the ground truth plan.
Each action in the generated plan is matched to its coun-
terpart in the ground truth plan, and the plan is deemed
successful if all actions are identical. This metric is referred
to as action success rate.

However, this metric does not provide a complete picture,
since it assumes the ground truth plan is the only correct
solution for each task, and does not account for valid
alternative paths. For example, for the instruction “give me
two newspapers,” it is equally valid to retrieve one from the
coffee table first and then from the shelf, or vice versa. This
evaluation method can only consider one option as correct.

4https://unsloth.ai

https://isr.tecnico.ulisboa.pt/isrobonet/
https://unsloth.ai

B. Evaluation Through Simulation

To address the limitations of the simple evaluation, a
simulation-based approach was developed. This approach
uses a Petri Net planning framework [8] to represent the
environment state and simulate plan execution, checking at
each step if the expected goal state has been reached.

A new dimension evaluated by this approach is the ex-
ecutability of a plan. Although a plan may initially seem
correct, such as the plan “move(kitchen), find person(John)”
for the instruction “find John”, it may not be feasible if one
of its actions cannot be executed. For example, if there is no
one in the kitchen, the action “find person(John)” will fail.
The execution success rate allows to evaluate this dimension,
as defined next:

ExeCution success rate (EC): This metric represents
the fraction of actions in a plan that can be executed in
the simulator, providing insight into the feasibility of the
specified actions given the simulated environment conditions.

Additionally, this approach allows for the use of two new
metrics defined in Shridhar et al. [6], namely the success rate
and the goal condition success rate.

Success Rate (SR): This metric is defined as the fraction
of plans in a dataset that were executed successfully. A plan
is considered successful if it can be executed in its entirety
and achieves all the sub-goals implied by the instruction.

Goal Condition success rate (GC): This metric evaluates
the partial completion of plans by representing the fraction
of sub-goals needed to complete the task that were actually
executed. It measures how well the plan achieves the neces-
sary goals for task completion.

VI. RESULTS

A. Pipeline Validation

The proposed pipeline was validated in competition envi-
ronments at both the 2024 RoboCup@Home Portugal Open
and RoboCup 2024 in Eindhoven. A simplified version of the
planner, without environmental information, was deployed.
This approach was chosen because, in competition, object
locations may change between instructions, making environ-
mental information less useful for planning.

The pipeline allowed the team to score bonus points for
the first time by using a non-expert operator, i.e. someone
with no robotics background who could rephrase commands.
It also secured the second-best GPSR result at RoboCup.5

B. Generalization to New Environments

To evaluate the model’s generalization across different
environments, the seen subsets of the ALFRED and GPSR
datasets, which use environments identical to those in the
training phase, were used as baselines. This was compared
against results from the unseen subsets of the ALFRED
dataset and the GPSR commands from the RoboCup 2024
environment, which were not used for training.

5A video of the GPSR performance at RoboCup 2024 is available on
the team’s YouTube channel: https://www.youtube.com/watch?
v=lOt5cVl01Lc

Goal Condition
Success Rate

Execution
Success Rate

Success Rate
0.0

0.2

0.4

0.6

0.8

1.0

Dataset
ALFRED seen
ALFRED unseen
ISR Testbed
RoboCup 2024

Fig. 3. Results in seen and unseen environments.

0.0 0.2 0.4 0.6 0.8 1.0
Word Error Rate

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Rule-Based Pipeline
End-to-End Pipeline

Fig. 4. Success rate for increasing levels of simulated ASR noise.

As expected, Figure 3 shows that the model performs bet-
ter with datasets similar to those used in training. However,
it generalizes well to new environments, with only a 1.5%
drop in success rate on the ALFRED dataset and a drop of
7.5% for the RoboCup 2024 dataset.

C. Resiliency to ASR Errors

An additional experiment evaluated the planner’s per-
formance under ASR errors, by introducing varying levels
of WER into the GPSR command dataset. The results
presented in Figure 4 demonstrate that the new pipeline
exhibits resilience to errors, maintaining a success rate of
approximately 65% with a WER of 30%, while the rule-
based approach, though achieving a 100% success rate in the
absence of errors, quickly drops to 10% as WER increases.

Additionally, this experiment demonstrated that, as WER
rises, the model generates more empty plans, recognizing
when instructions become nonsensical and responding ac-
cordingly. Ideally, the model should generate a valid plan,
or none at all when faced with incomprehensible commands,
meaning execution success and empty plans should sum to
100%. The results show this combined metric never falls
below 70%, even at higher error rates, highlighting the
model’s robustness in managing ASR errors.

D. Ablation Studies

To evaluate the effectiveness of Grammar-Constrained De-
coding (GCD) and fine-tuning with LoRA, ablation studies
were conducted by evaluating the model’s performance with
no adaptation, each method individually, and both combined.

The results in Figure 5 show that the fine-tuned model
alone generates correct and executable plans, with no signif-
icant gains when paired with GCD. Fine-tuning is crucial for

https://www.youtube.com/watch?v=lOt5cVl01Lc
https://www.youtube.com/watch?v=lOt5cVl01Lc

ALFRED
seen

ALFRED
unseen

ISR
Testbed

RoboCup
2024

Dataset

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

Adaptation Method
LoRA + GCD
only LoRA
only GCD
no adaptation

(a) Success Rate

ALFRED
seen

ALFRED
unseen

ISR
Testbed

RoboCup
2024

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Su

cc
es

s R
at

e

Adaptation Method
LoRA + GCD
only LoRA
only GCD
no adaptation

(b) ExeCution success rate

Fig. 5. Success rate and execution success of plans generated with different
model adaptation strategies. Bars for “no adaptation” are not shown, as this
setup failed to generate JSON plans.

generating correct plans, as success rates drop to near zero
with the original model, regardless of GCD.

However, GCD ensures plan executability. With the non-
fine-tuned model, plans generated with GCD, though not
fully achieving goals, were partially executable. This high-
lights the potential of grammars in constraining the model’s
output to ensure executable plans.

VII. CONCLUSIONS AND FUTURE WORK

This work introduces a pipeline for robot task plan-
ning, transforming spoken instructions into executable plans.
We describe a framework that integrates LLMs within the
SocRob@Home GPSR pipeline, enabling the robot to in-
terpret and act on natural language commands in dynamic
environments. We specifically fine-tuned the Phi-3-mini-4k-
instruct model with ALFRED and RoboCup@Home data,
pairing natural language instructions with plans. Handling
ASR errors with simulated error data, and using GCD during
inference proved beneficial for consistent execution despite
transcription inaccuracies.

Simulation tests demonstrated a success rate of around
70% for RoboCup instructions, and 55% for the more
complex ALFRED instructions. This performance held, to
a high degree, even in the presence of simulated ASR
errors. However, improvements remain possible, especially
in adaptability to real-time changes. Future work could
explore re-prompting the model to adjust plans when facing
unexpected conditions, enhancing task success rates through
dynamic responses. Incorporating longer-term memory and
conditional branching can also enhance robustness, enabling

the robot to remember preferences and adapt tasks based on
past interactions. This would allow robots to complete tasks
more efficiently and provide more personalized interactions.

Another approach is to use the LLM to convert instructions
into a generic formal language, processed by a classical plan-
ner. This hybrid method combines the flexibility of LLMs
with the formal guarantees of classical planning algorithms.

REFERENCES

[1] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak super-
vision,” in International Conference on Machine Learning. PMLR,
2023, pp. 28 492–28 518.

[2] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian, et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on Robot
Learning. PMLR, 2023, pp. 287–318.

[3] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and
K. Ikeuchi, “ChatGPT empowered long-step robot control
in various environments: A case application,” IEEE Access,
vol. 11, pp. 95 060–95 078, 2023. [Online]. Available: https:
//doi.org/10.1109%2Faccess.2023.3310935

[4] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and
Y. Su, “LLM-planner: Few-shot grounded planning for embodied
agents with large language models,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 2998–3009.

[5] M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah,
H. Awadalla, N. Bach, A. Bahree, A. Bakhtiari, H. Behl,
et al., “Phi-3 technical report: A highly capable language model
locally on your phone,” Microsoft, Tech. Rep. MSR-TR-2024-12,
August 2024. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/phi-3-technical-report-a-highly-capable-
language-model-locally-on-your-phone/

[6] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 10 740–10 749.

[7] J. Hart, A. Moriarty, K. Pasternak, J. Kummert, A. Hawkin,
V. Hassouna, J. D. Pena Narvaez, L. Ruegemer, L. von Seelstrang,
P. Van Dooren, J. J. Garcia, A. Mitzutani, Y. Jiang, T. Matsushima,
and R. Polvara, “RoboCup@Home 2024: Rules and regulations,” https:
//github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1, 2024.

[8] C. Azevedo, A. Matos, P. U. Lima, and J. Avendaño, “Petri
Net Toolbox for Multi-Robot Planning under Uncertainty,” Applied
Sciences, vol. 11, no. 24, p. 12087, Jan. 2021, number: 24 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2076-3417/11/24/12087

[9] P. Sarnadas, “Towards a general purpose service robot task planning
system: Reasoning in a Petri net model with Monte Carlo tree search,”
Master’s thesis, Instituto Superior Técnico, 2023.

[10] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart,
S. Welker, A. Wahid, et al., “Rt-2: Vision-language-action models
transfer web knowledge to robotic control,” in Conference on Robot
Learning. PMLR, 2023, pp. 2165–2183.

[11] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee,
D. Crandall, and D. Batra, “Diverse beam search: Decoding di-
verse solutions from neural sequence models,” arXiv preprint
arXiv:1610.02424, 2016.

[12] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “LoRA: Low-rank adaptation of large language models,”
in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9

[13] S. Geng, M. Josifoski, M. Peyrard, and R. West, “Grammar-
constrained decoding for structured NLP tasks without finetuning,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2023, pp. 10 932–10 952.

[14] R. Voleti, J. M. Liss, and V. Berisha, “Investigating the effects of
word substitution errors on sentence embeddings,” in 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2019, pp. 7315–7319.

https://doi.org/10.1109%2Faccess.2023.3310935
https://doi.org/10.1109%2Faccess.2023.3310935
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://github.com/RoboCupAtHome/RuleBook/releases/tag/2024.1
https://www.mdpi.com/2076-3417/11/24/12087
https://openreview.net/forum?id=nZeVKeeFYf9

	Introduction
	Related Work
	Petri Net-based Approaches
	Planning with Large Language Models

	Methodology
	Instruction Representation
	Environment Representation
	Action Representations
	Language Model Adaptation

	Implementation Details
	Used Datasets
	Dataset Expansion
	Model Adaptation

	Evaluation Methodology
	Evaluation Using Ground Truth Plans
	Evaluation Through Simulation

	Results
	Pipeline Validation
	Generalization to New Environments
	Resiliency to ASR Errors
	Ablation Studies

	Conclusions and Future Work
	References

